Integrity
Write
Loading...
Jenn Leach

Jenn Leach

3 years ago

What TikTok Paid Me in 2021 with 100,000 Followers

More on Entrepreneurship/Creators

cdixon

cdixon

3 years ago

2000s Toys, Secrets, and Cycles

During the dot-com bust, I started my internet career. People used the internet intermittently to check email, plan travel, and do research. The average internet user spent 30 minutes online a day, compared to 7 today. To use the internet, you had to "log on" (most people still used dial-up), unlike today's always-on, high-speed mobile internet. In 2001, Amazon's market cap was $2.2B, 1/500th of what it is today. A study asked Americans if they'd adopt broadband, and most said no. They didn't see a need to speed up email, the most popular internet use. The National Academy of Sciences ranked the internet 13th among the 100 greatest inventions, below radio and phones. The internet was a cool invention, but it had limited uses and wasn't a good place to build a business. 

A small but growing movement of developers and founders believed the internet could be more than a read-only medium, allowing anyone to create and publish. This is web 2. The runner up name was read-write web. (These terms were used in prominent publications and conferences.) 

Web 2 concepts included letting users publish whatever they want ("user generated content" was a buzzword), social graphs, APIs and mashups (what we call composability today), and tagging over hierarchical navigation. Technical innovations occurred. A seemingly simple but important one was dynamically updating web pages without reloading. This is now how people expect web apps to work. Mobile devices that could access the web were niche (I was an avid Sidekick user). 

The contrast between what smart founders and engineers discussed over dinner and on weekends and what the mainstream tech world took seriously during the week was striking. Enterprise security appliances, essentially preloaded servers with security software, were a popular trend. Many of the same people would talk about "serious" products at work, then talk about consumer internet products and web 2. It was tech's biggest news. Web 2 products were seen as toys, not real businesses. They were hobbies, not work-related. 

There's a strong correlation between rich product design spaces and what smart people find interesting, which took me some time to learn and led to blog posts like "The next big thing will start out looking like a toy" Web 2's novel product design possibilities sparked dinner and weekend conversations. Imagine combining these features. What if you used this pattern elsewhere? What new product ideas are next? This excited people. "Serious stuff" like security appliances seemed more limited. 

The small and passionate web 2 community also stood out. I attended the first New York Tech meetup in 2004. Everyone fit in Meetup's small conference room. Late at night, people demoed their software and chatted. I have old friends. Sometimes I get asked how I first met old friends like Fred Wilson and Alexis Ohanian. These topics didn't interest many people, especially on the east coast. We were friends. Real community. Alex Rampell, who now works with me at a16z, is someone I met in 2003 when a friend said, "Hey, I met someone else interested in consumer internet." Rare. People were focused and enthusiastic. Revolution seemed imminent. We knew a secret nobody else did. 

My web 2 startup was called SiteAdvisor. When my co-founders and I started developing the idea in 2003, web security was out of control. Phishing and spyware were common on Internet Explorer PCs. SiteAdvisor was designed to warn users about security threats like phishing and spyware, and then, using web 2 concepts like user-generated reviews, add more subjective judgments (similar to what TrustPilot seems to do today). This staged approach was common at the time; I called it "Come for the tool, stay for the network." We built APIs, encouraged mashups, and did SEO marketing. 

Yahoo's 2005 acquisitions of Flickr and Delicious boosted web 2 in 2005. By today's standards, the amounts were small, around $30M each, but it was a signal. Web 2 was assumed to be a fun hobby, a way to build cool stuff, but not a business. Yahoo was a savvy company that said it would make web 2 a priority. 

As I recall, that's when web 2 started becoming mainstream tech. Early web 2 founders transitioned successfully. Other entrepreneurs built on the early enthusiasts' work. Competition shifted from ideation to execution. You had to decide if you wanted to be an idealistic indie bar band or a pragmatic stadium band. 

Web 2 was booming in 2007 Facebook passed 10M users, Twitter grew and got VC funding, and Google bought YouTube. The 2008 financial crisis tested entrepreneurs' resolve. Smart people predicted another great depression as tech funding dried up. 

Many people struggled during the recession. 2008-2011 was a golden age for startups. By 2009, talented founders were flooding Apple's iPhone app store. Mobile apps were booming. Uber, Venmo, Snap, and Instagram were all founded between 2009 and 2011. Social media (which had replaced web 2), cloud computing (which enabled apps to scale server side), and smartphones converged. Even if social, cloud, and mobile improve linearly, the combination could improve exponentially. 

This chart shows how I view product and financial cycles. Product and financial cycles evolve separately. The Nasdaq index is a proxy for the financial sentiment. Financial sentiment wildly fluctuates. 

Next row shows iconic startup or product years. Bottom-row product cycles dictate timing. Product cycles are more predictable than financial cycles because they follow internal logic. In the incubation phase, enthusiasts build products for other enthusiasts on nights and weekends. When the right mix of technology, talent, and community knowledge arrives, products go mainstream. (I show the biggest tech cycles in the chart, but smaller ones happen, like web 2 in the 2000s and fintech and SaaS in the 2010s.) 

Tech has changed since the 2000s. Few tech giants dominate the internet, exerting economic and cultural influence. In the 2000s, web 2 was ignored or dismissed as trivial. Entrenched interests respond aggressively to new movements that could threaten them. Creative patterns from the 2000s continue today, driven by enthusiasts who see possibilities where others don't. Know where to look. Crypto and web 3 are where I'd start. 

Today's negative financial sentiment reminds me of 2008. If we face a prolonged downturn, we can learn from 2008 by preserving capital and focusing on the long term. Keep an eye on the product cycle. Smart people are interested in things with product potential. This becomes true. Toys become necessities. Hobbies become mainstream. Optimists build the future, not cynics.


Full article is available here

Sanjay Priyadarshi

Sanjay Priyadarshi

3 years ago

A 19-year-old dropped out of college to build a $2,300,000,000 company in 2 years.

His success was unforeseeable.

2014 saw Facebook's $2.3 billion purchase of Oculus VR.

19-year-old Palmer Luckey founded Oculus. He quit journalism school. His parents worried about his college dropout.

Facebook bought Oculus VR in less than 2 years.

Palmer Luckey started Anduril Industries. Palmer has raised $385 million with Anduril.

The Oculus journey began in a trailer

Palmer Luckey, 19, owned the trailer.

Luckey had his trailer customized. The trailer had all six of Luckey's screens. In the trailer's remaining area, Luckey conducted hardware tests.

At 16, he became obsessed with virtual reality. Virtual reality was rare at the time.

Luckey didn't know about VR when he started.

Previously, he liked "portabilizing" mods. Hacking ancient game consoles into handhelds.

In his city, fewer portabilizers actively traded.

Luckey started "ModRetro" for other portabilizers. Luckey was exposed to VR headsets online.

Luckey:

“Man, ModRetro days were the best.”

Palmer Luckey used VR headsets for three years. His design had 50 prototypes.

Luckey used to work at the Long Beach Sailing Center for minimum salary, servicing diesel engines and cleaning boats.

Luckey worked in a USC Institute for Creative Technologies mixed reality lab in July 2011. (ICT).

Luckey cleaned the lab, did reports, and helped other students with VR projects.

Luckey's lab job was dull.

Luckey chose to work in the lab because he wanted to engage with like-minded folks.

By 2012, Luckey had a prototype he hoped to share globally. He made cheaper headsets than others.

Luckey wanted to sell an easy-to-assemble virtual reality kit on Kickstarter.

He realized he needed a corporation to do these sales legally. He started looking for names. "Virtuality," "virtual," and "VR" are all taken.

Hence, Oculus.

If Luckey sold a hundred prototypes, he would be thrilled since it would boost his future possibilities.

John Carmack, legendary game designer

Carmack has liked sci-fi and fantasy since infancy.

Carmack loved imagining intricate gaming worlds.

His interest in programming and computer science grew with age.

He liked graphics. He liked how mismatching 0 and 1 might create new colors and visuals.

Carmack played computer games as a teen. He created Shadowforge in high school.

He founded Id software in 1991. When Carmack created id software, console games were the best-sellers.

Old computer games have weak graphics. John Carmack and id software developed "adaptive tile refresh."

This technique smoothed PC game scrolling. id software launched 3-D, Quake, and Doom using "adaptive tile refresh."

These games made John Carmack a gaming star. Later, he sold Id software to ZeniMax Media.

How Palmer Luckey met Carmack

In 2011, Carmack was thinking a lot about 3-D space and virtual reality.

He was underwhelmed by the greatest HMD on the market. Because of their flimsiness and latency.

His disappointment was partly due to the view (FOV). Best HMD had 40-degree field of view.

Poor. The best VR headset is useless with a 40-degree FOV.

Carmack intended to show the press Doom 3 in VR. He explored VR headsets and internet groups for this reason.

Carmack identified a VR enthusiast in the comments section of "LEEP on the Cheap." "PalmerTech" was the name.

Carmack approached PalmerTech about his prototype. He told Luckey about his VR demos, so he wanted to see his prototype.

Carmack got a Rift prototype. Here's his May 17 tweet.

John Carmack tweeted an evaluation of the Luckey prototype.

Dan Newell, a Valve engineer, and Mick Hocking, a Sony senior director, pre-ordered Oculus Rift prototypes with Carmack's help.

Everyone praised Luckey after Carmack demoed Rift.

Palmer Luckey received a job offer from Sony.

  • It was a full-time position at Sony Computer Europe.

  • He would run Sony’s R&D lab.

  • The salary would be $70k.

Who is Brendan Iribe?

Brendan Iribe started early with Startups. In 2004, he and Mike Antonov founded Scaleform.

Scaleform created high-performance middleware. This package allows 3D Flash games.

In 2011, Iribe sold Scaleform to Autodesk for $36 million.

How Brendan Iribe discovered Palmer Luckey.

Brendan Iribe's friend Laurent Scallie.

Laurent told Iribe about a potential opportunity.

Laurent promised Iribe VR will work this time. Laurent introduced Iribe to Luckey.

Iribe was doubtful after hearing Laurent's statements. He doubted Laurent's VR claims.

But since Laurent took the name John Carmack, Iribe thought he should look at Luckey Innovation. Iribe was hooked on virtual reality after reading Palmer Luckey stories.

He asked Scallie about Palmer Luckey.

Iribe convinced Luckey to start Oculus with him

First meeting between Palmer Luckey and Iribe.

The Iribe team wanted Luckey to feel comfortable.

Iribe sought to convince Luckey that launching a company was easy. Iribe told Luckey anyone could start a business.

Luckey told Iribe's staff he was homeschooled from childhood. Luckey took self-study courses.

Luckey had planned to launch a Kickstarter campaign and sell kits for his prototype. Many companies offered him jobs, nevertheless.

He's considering Sony's offer.

Iribe advised Luckey to stay independent and not join a firm. Iribe asked Luckey how he could raise his child better. No one sees your baby like you do?

Iribe's team pushed Luckey to stay independent and establish a software ecosystem around his device.

After conversing with Iribe, Luckey rejected every job offer and merger option.

Iribe convinced Luckey to provide an SDK for Oculus developers.

After a few months. Brendan Iribe co-founded Oculus with Palmer Luckey. Luckey trusted Iribe and his crew, so he started a corporation with him.

Crowdfunding

Brendan Iribe and Palmer Luckey launched a Kickstarter.

Gabe Newell endorsed Palmer's Kickstarter video.

Gabe Newell wants folks to trust Palmer Luckey since he's doing something fascinating and answering tough questions.

Mark Bolas and David Helgason backed Palmer Luckey's VR Kickstarter video.

Luckey introduced Oculus Rift during the Kickstarter campaign. He introduced virtual reality during press conferences.

Oculus' Kickstarter effort was a success. Palmer Luckey felt he could raise $250,000.

Oculus raised $2.4 million through Kickstarter. Palmer Luckey's virtual reality vision was well-received.

Mark Zuckerberg's Oculus discovery

Brendan Iribe and Palmer Luckey hired the right personnel after a successful Kickstarter campaign.

Oculus needs a lot of money for engineers and hardware. They needed investors' money.

Series A raised $16M.

Next, Andreessen Horowitz partner Brain Cho approached Iribe.

Cho told Iribe that Andreessen Horowitz could invest in Oculus Series B if the company solved motion sickness.

Mark Andreessen was Iribe's dream client.

Marc Andreessen and his partners gave Oculus $75 million.

Andreessen introduced Iribe to Zukerberg. Iribe and Zukerberg discussed the future of games and virtual reality by phone.

Facebook's Oculus demo

Iribe showed Zuckerberg Oculus.

Mark was hooked after using Oculus. The headset impressed him.

The whole Facebook crew who saw the demo said only one thing.

“Holy Crap!”

This surprised them all.

Mark Zuckerberg was impressed by the team's response. Mark Zuckerberg met the Oculus team five days after the demo.

First meeting Palmer Luckey.

Palmer Luckey is one of Mark's biggest supporters and loves Facebook.

Oculus Acquisition

Zuckerberg wanted Oculus.

Brendan Iribe had requested for $4 billion, but Mark wasn't interested.

Facebook bought Oculus for $2.3 billion after months of drama.

After selling his company, how does Palmer view money?

Palmer loves the freedom money gives him. Money frees him from small worries.

Money has allowed him to pursue things he wouldn't have otherwise.

“If I didn’t have money I wouldn’t have a collection of vintage military vehicles…You can have nice hobbies that keep you relaxed when you have money.”

He didn't start Oculus to generate money. His virtual reality passion spanned years.

He didn't have to lie about how virtual reality will transform everything until he needed funding.

The company's success was an unexpected bonus. He was merely passionate about a good cause.

After Oculus' $2.3 billion exit, what changed?

Palmer didn't mind being rich. He did similar things.

After Facebook bought Oculus, he moved to Silicon Valley and lived in a 12-person shared house due to high rents.

Palmer might have afforded a big mansion, but he prefers stability and doing things because he wants to, not because he has to.

“Taco Bell is never tasted so good as when you know you could afford to never eat taco bell again.”

Palmer's leadership shifted.

Palmer changed his leadership after selling Oculus.

When he launched his second company, he couldn't work on his passions.

“When you start a tech company you do it because you want to work on a technology, that is why you are interested in that space in the first place. As the company has grown, he has realized that if he is still doing optical design in the company it’s because he is being negligent about the hiring process.”

Once his startup grows, the founder's responsibilities shift. He must recruit better firm managers.

Recruiting talented people becomes the top priority. The founder must convince others of their influence.

A book that helped me write this:

The History of the Future: Oculus, Facebook, and the Revolution That Swept Virtual Reality — Blake Harris


*This post is a summary. Read the full article here.

Aure's Notes

Aure's Notes

3 years ago

I met a man who in just 18 months scaled his startup to $100 million.

A fascinating business conversation.

Photo by abhishek gaurav on Unsplash

This week at Web Summit, I had mentor hour.

Mentor hour connects startups with experienced entrepreneurs.

The YC-selected founder who mentored me had grown his company to $100 million in 18 months.

I had 45 minutes to question him.

I've compiled this.

Context

Founder's name is Zack.

After working in private equity, Zack opted to acquire an MBA.

Surrounded by entrepreneurs at a prominent school, he decided to become one himself.

Unsure how to proceed, he bet on two horses.

On one side, he received an offer from folks who needed help running their startup owing to lack of time. On the other hand, he had an idea for a SaaS to start himself.

He just needed to validate it.

Validating

Since Zack's proposal helped companies, he contacted university entrepreneurs for comments.

He contacted university founders.

Once he knew he'd correctly identified the problem and that people were willing to pay to address it, he started developing.

He earned $100k in a university entrepreneurship competition.

His plan was evident by then.

The other startup's founders saw his potential and granted him $400k to launch his own SaaS.

Hiring

He started looking for a tech co-founder because he lacked IT skills.

He interviewed dozens and picked the finest.

As he didn't want to wait for his program to be ready, he contacted hundreds of potential clients and got 15 letters of intent promising they'd join up when it was available.

YC accepted him by then.

He had enough positive signals to raise.

Raising

He didn't say how many VCs he called, but he indicated 50 were interested.

He jammed meetings into two weeks to generate pressure and encourage them to invest.

Seed raise: $11 million.

Selling

His objective was to contact as many entrepreneurs as possible to promote his product.

He first contacted startups by scraping CrunchBase data.

Once he had more money, he started targeting companies with ZoomInfo.

His VC urged him not to hire salespeople until he closed 50 clients himself.

He closed 100 and hired a CRO through a headhunter.

Scaling

Three persons started the business.

  1. He primarily works in sales.

  2. Coding the product was done by his co-founder.

  3. Another person performing operational duties.

He regretted recruiting the third co-founder, who was ineffective (could have hired an employee instead).

He wanted his company to be big, so he hired two young marketing people from a competing company.

After validating several marketing channels, he chose PR.

$100 Million and under

He developed a sales team and now employs 30 individuals.

He raised a $100 million Series A.

Additionally, he stated

  • He’s been rejected a lot. Like, a lot.

  • Two great books to read: Steve Jobs by Isaacson, and Why Startups Fail by Tom Eisenmann.

  • The best skill to learn for non-tech founders is “telling stories”, which means sales. A founder’s main job is to convince: co-founders, employees, investors, and customers. Learn code, or learn sales.

Conclusion

I often read about these stories but hardly take them seriously.

Zack was amazing.

Three things about him stand out:

  1. His vision. He possessed a certain amount of fire.

  2. His vitality. The man had a lot of enthusiasm and spoke quickly and decisively. He takes no chances and pushes the envelope in all he does.

  3. His Rolex.

He didn't do all this in 18 months.

Not really.

He couldn't launch his company without private equity experience.

These accounts disregard entrepreneurs' original knowledge.

Hormozi will tell you how he founded Gym Launch, but he won't tell you how he had a gym first, how he worked at uni to pay for his gym, or how he went to the gym and learnt about fitness, which gave him the idea to open his own.

Nobody knows nothing. If you scale quickly, it's probable because you gained information early.

Lincoln said, "Give me six hours to chop down a tree, and I'll spend four sharpening the axe."

Sharper axes cut trees faster.

You might also like

Aldric Chen

Aldric Chen

3 years ago

Jack Dorsey's Meeting Best Practice was something I tried. It Performs Exceptionally Well in Consulting Engagements.

Photo by Cherrydeck on Unsplash

Yes, client meetings are difficult. Especially when I'm alone.

Clients must tell us their problems so we can help.

In-meeting challenges contribute nothing to our work. Consider this:

  • Clients are unprepared.

  • Clients are distracted.

  • Clients are confused.

Introducing Jack Dorsey's Google Doc approach

I endorse his approach to meetings.

Not Google Doc-related. Jack uses it for meetings.

This is what his meetings look like.

  • Prior to the meeting, the Chair creates the agenda, structure, and information using Google Doc.

  • Participants in the meeting would have 5-10 minutes to read the Google Doc.

  • They have 5-10 minutes to type their comments on the document.

  • In-depth discussion begins

There is elegance in simplicity. Here's how Jack's approach is fantastic.

Unprepared clients are given time to read.

During the meeting, they think and work on it.

They can see real-time remarks from others.

Discussion ensues.

Three months ago, I fell for this strategy. After trying it with a client, I got good results.

I conducted social control experiments in a few client workshops.

Context matters.

I am sure Jack Dorsey’s method works well in meetings. What about client workshops?

So, I tested Enterprise of the Future with a consulting client.

I sent multiple emails to client stakeholders describing the new approach.

No PowerPoints that day. I spent the night setting up the Google Doc with conversation topics, critical thinking questions, and a Before and After section.

The client was shocked. First, a Google Doc was projected. Second surprise was a verbal feedback.

“No pre-meeting materials?”

“Don’t worry. I know you are not reading it before our meeting, anyway.”

We laughed. The experiment started.

Observations throughout a 90-minute engagement workshop from beginning to end

For 10 minutes, the workshop was silent.

People read the Google Doc. For some, the silence was unnerving.

“Are you not going to present anything to us?”

I said everything's in Google Doc. I asked them to read, remark, and add relevant paragraphs.

As they unlocked their laptops, they were annoyed.

Ten client stakeholders are typing on the Google Doc. My laptop displays comment bubbles, red lines, new paragraphs, and strikethroughs.

The first 10 minutes were productive. Everyone has seen and contributed to the document.

I was silent.

The move to a classical workshop was smooth. I didn't stimulate dialogue. They did.

Stephanie asked Joe why a blended workforce hinders company productivity. She questioned his comments and additional paragraphs.

That is when a light bulb hit my head. Yes, you want to speak to the right person to resolve issues!

Not only that was discussed. Others discussed their remark bubbles with neighbors. Debate circles sprung up one after the other.

The best part? I asked everyone to add their post-discussion thoughts on a Google Doc.

After the workshop, I have:

  • An agreement-based working document

  • A post-discussion minutes that are prepared for publication

  • A record of the discussion points that were brought up, argued, and evaluated critically

It showed me how stakeholders viewed their Enterprise of the Future. It allowed me to align with them.

Finale Keynotes

Client meetings are a hit-or-miss. I know that.

Jack Dorsey's meeting strategy works for consulting. It promotes session alignment.

It relieves clients of preparation.

I get the necessary information to advance this consulting engagement.

It is brilliant.

Shalitha Suranga

Shalitha Suranga

3 years ago

The Top 5 Mathematical Concepts Every Programmer Needs to Know

Using math to write efficient code in any language

Photo by Emile Perron on Unsplash, edited with Canva

Programmers design, build, test, and maintain software. Employ cases and personal preferences determine the programming languages we use throughout development. Mobile app developers use JavaScript or Dart. Some programmers design performance-first software in C/C++.

A generic source code includes language-specific grammar, pre-implemented function calls, mathematical operators, and control statements. Some mathematical principles assist us enhance our programming and problem-solving skills.

We all use basic mathematical concepts like formulas and relational operators (aka comparison operators) in programming in our daily lives. Beyond these mathematical syntaxes, we'll see discrete math topics. This narrative explains key math topics programmers must know. Master these ideas to produce clean and efficient software code.

Expressions in mathematics and built-in mathematical functions

A source code can only contain a mathematical algorithm or prebuilt API functions. We develop source code between these two ends. If you create code to fetch JSON data from a RESTful service, you'll invoke an HTTP client and won't conduct any math. If you write a function to compute the circle's area, you conduct the math there.

When your source code gets more mathematical, you'll need to use mathematical functions. Every programming language has a math module and syntactical operators. Good programmers always consider code readability, so we should learn to write readable mathematical expressions.

Linux utilizes clear math expressions.

A mathematical expression/formula in the Linux codebase, a screenshot by the author

Inbuilt max and min functions can minimize verbose if statements.

Reducing a verbose nested-if with the min function in Neutralinojs, a screenshot by the author

How can we compute the number of pages needed to display known data? In such instances, the ceil function is often utilized.

import math as m
results = 102
items_per_page = 10 
pages = m.ceil(results / items_per_page)
print(pages)

Learn to write clear, concise math expressions.

Combinatorics in Algorithm Design

Combinatorics theory counts, selects, and arranges numbers or objects. First, consider these programming-related questions. Four-digit PIN security? what options exist? What if the PIN has a prefix? How to locate all decimal number pairs?

Combinatorics questions. Software engineering jobs often require counting items. Combinatorics counts elements without counting them one by one or through other verbose approaches, therefore it enables us to offer minimum and efficient solutions to real-world situations. Combinatorics helps us make reliable decision tests without missing edge cases. Write a program to see if three inputs form a triangle. This is a question I commonly ask in software engineering interviews.

Graph theory is a subfield of combinatorics. Graph theory is used in computerized road maps and social media apps.

Logarithms and Geometry Understanding

Geometry studies shapes, angles, and sizes. Cartesian geometry involves representing geometric objects in multidimensional planes. Geometry is useful for programming. Cartesian geometry is useful for vector graphics, game development, and low-level computer graphics. We can simply work with 2D and 3D arrays as plane axes.

GetWindowRect is a Windows GUI SDK geometric object.

GetWindowRect outputs an LPRECT geometric object, a screenshot by the author

High-level GUI SDKs and libraries use geometric notions like coordinates, dimensions, and forms, therefore knowing geometry speeds up work with computer graphics APIs.

How does exponentiation's inverse function work? Logarithm is exponentiation's inverse function. Logarithm helps programmers find efficient algorithms and solve calculations. Writing efficient code involves finding algorithms with logarithmic temporal complexity. Programmers prefer binary search (O(log n)) over linear search (O(n)). Git source specifies O(log n):

The Git codebase defines a function with logarithmic time complexity, a screenshot by the author

Logarithms aid with programming math. Metas Watchman uses a logarithmic utility function to find the next power of two.

A utility function that uses ceil, a screenshot by the author

Employing Mathematical Data Structures

Programmers must know data structures to develop clean, efficient code. Stack, queue, and hashmap are computer science basics. Sets and graphs are discrete arithmetic data structures. Most computer languages include a set structure to hold distinct data entries. In most computer languages, graphs can be represented using neighboring lists or objects.

Using sets as deduped lists is powerful because set implementations allow iterators. Instead of a list (or array), store WebSocket connections in a set.

Most interviewers ask graph theory questions, yet current software engineers don't practice algorithms. Graph theory challenges become obligatory in IT firm interviews.

Recognizing Applications of Recursion

A function in programming isolates input(s) and output(s) (s). Programming functions may have originated from mathematical function theories. Programming and math functions are different but similar. Both function types accept input and return value.

Recursion involves calling the same function inside another function. In its implementation, you'll call the Fibonacci sequence. Recursion solves divide-and-conquer software engineering difficulties and avoids code repetition. I recently built the following recursive Dart code to render a Flutter multi-depth expanding list UI:

Recursion is not the natural linear way to solve problems, hence thinking recursively is difficult. Everything becomes clear when a mathematical function definition includes a base case and recursive call.

Conclusion

Every codebase uses arithmetic operators, relational operators, and expressions. To build mathematical expressions, we typically employ log, ceil, floor, min, max, etc. Combinatorics, geometry, data structures, and recursion help implement algorithms. Unless you operate in a pure mathematical domain, you may not use calculus, limits, and other complex math in daily programming (i.e., a game engine). These principles are fundamental for daily programming activities.

Master the above math fundamentals to build clean, efficient code.

Nojus Tumenas

Nojus Tumenas

3 years ago

NASA: Strange Betelgeuse Explosion Just Took Place

Orion's red supergiant Betelgeuse erupted. This is astronomers' most magnificent occurrence.

Betelgeuse, a supergiant star in Orion, garnered attention in 2019 for its peculiar appearance. It continued to dim in 2020.

The star was previously thought to explode as a supernova. Studying the event has revealed what happened to Betelgeuse since it happened.

Astronomers saw that the star released a large amount of material, causing it to lose a section of its surface.

They have never seen anything like this and are unsure what caused the star to release so much material.

According to Harvard-Smithsonian Center for Astrophysics astrophysicist Andrea Dupre, astronomers' data reveals an unexplained mystery.

They say it's a new technique to examine star evolution. The James Webb telescope revealed the star's surface features.

Corona flares are stellar mass ejections. These eruptions change the Sun's outer atmosphere.

This could affect power grids and satellite communications if it hits Earth.

Betelgeuse's flare ejected four times more material than the Sun's corona flare.

Astronomers have monitored star rhythms for 50 years. They've seen its dimming and brightening cycle start, stop, and repeat.

Monitoring Betelgeuse's pulse revealed the eruption's power.

Dupre believes the star's convection cells are still amplifying the blast's effects, comparing it to an imbalanced washing machine tub.

The star's outer layer has returned to normal, Hubble data shows. The photosphere slowly rebuilds its springy surface.

Dupre noted the star's unusual behavior. For instance, it’s causing its interior to bounce.

This suggests that the mass ejections that caused the star's surface to lose mass were two separate processes.

Researchers hope to better understand star mass ejection with the James Webb Space Telescope.