Integrity
Write
Loading...
Amelia Winger-Bearskin

Amelia Winger-Bearskin

3 years ago

Reasons Why AI-Generated Images Remind Me of Nightmares

More on Technology

Christianlauer

Christianlauer

3 years ago

Looker Studio Pro is now generally available, according to Google.

Great News about the new Google Business Intelligence Solution

Photo by Mitchell Luo on Unsplash

Google has renamed Data Studio to Looker Studio and Looker Studio Pro.

Now, Google releases Looker Studio Pro. Similar to the move from Data Studio to Looker Studio, Looker Studio Pro is basically what Looker was previously, but both solutions will merge. Google says the Pro edition will acquire new enterprise management features, team collaboration capabilities, and SLAs.

Dashboard Example in Looker Studio Pro — Image Source: Google[2]

In addition to Google's announcements and sales methods, additional features include:

Looker Studio assets can now have organizational ownership. Customers can link Looker Studio to a Google Cloud project and migrate existing assets once. This provides:

  • Your users' created Looker Studio assets are all kept in a Google Cloud project.

  • When the users who own assets leave your organization, the assets won't be removed.

  • Using IAM, you may provide each Looker Studio asset in your company project-level permissions.

  • Other Cloud services can access Looker Studio assets that are owned by a Google Cloud project.

Looker Studio Pro clients may now manage report and data source access at scale using team workspaces.

Google announcing these features for the pro version is fascinating. Both products will likely converge, but Google may only release many features in the premium version in the future. Microsoft with Power BI and its free and premium variants already achieves this.

Sources and Further Readings

Google, Release Notes (2022)

Google, Looker (2022)

Thomas Smith

3 years ago

ChatGPT Is Experiencing a Lightbulb Moment

Why breakthrough technologies must be accessible

ChatGPT has exploded. Over 1 million people have used the app, and coding sites like Stack Overflow have banned its answers. It's huge.

I wouldn't have called that as an AI researcher. ChatGPT uses the same GPT-3 technology that's been around for over two years.

More than impressive technology, ChatGPT 3 shows how access makes breakthroughs usable. OpenAI has finally made people realize the power of AI by packaging GPT-3 for normal users.

We think of Thomas Edison as the inventor of the lightbulb, not because he invented it, but because he popularized it.

Going forward, AI companies that make using AI easy will thrive.

Use-case importance

Most modern AI systems use massive language models. These language models are trained on 6,000+ years of human text.

GPT-3 ate 8 billion pages, almost every book, and Wikipedia. It created an AI that can write sea shanties and solve coding problems.

Nothing new. I began beta testing GPT-3 in 2020, but the system's basics date back further.

Tools like GPT-3 are hidden in many apps. Many of the AI writing assistants on this platform are just wrappers around GPT-3.

Lots of online utilitarian text, like restaurant menu summaries or city guides, is written by AI systems like GPT-3. You've probably read GPT-3 without knowing it.

Accessibility

Why is ChatGPT so popular if the technology is old?

ChatGPT makes the technology accessible. Free to use, people can sign up and text with the chatbot daily. ChatGPT isn't revolutionary. It does it in a way normal people can access and be amazed by.

Accessibility isn't easy. OpenAI's Sam Altman tweeted that opening ChatGPT to the public increased computing costs.

Each chat costs "low-digit cents" to process. OpenAI probably spends several hundred thousand dollars a day to keep ChatGPT running, with no immediate business case.

Academic researchers and others who developed GPT-3 couldn't afford it. Without resources to make technology accessible, it can't be used.

Retrospective

This dynamic is old. In the history of science, a researcher with a breakthrough idea was often overshadowed by an entrepreneur or visionary who made it accessible to the public.

We think of Thomas Edison as the inventor of the lightbulb. But really, Vasilij Petrov, Thomas Wright, and Joseph Swan invented the lightbulb. Edison made technology visible and accessible by electrifying public buildings, building power plants, and wiring.

Edison probably lost a ton of money on stunts like building a power plant to light JP Morgan's home, the NYSE, and several newspaper headquarters.

People wanted electric lights once they saw their benefits. By making the technology accessible and visible, Edison unlocked a hugely profitable market.

Similar things are happening in AI. ChatGPT shows that developing breakthrough technology in the lab or on B2B servers won't change the culture.

AI must engage people's imaginations to become mainstream. Before the tech impacts the world, people must play with it and see its revolutionary power.

As the field evolves, companies that make the technology widely available, even at great cost, will succeed.

OpenAI's compute fees are eye-watering. Revolutions are costly.

Nick Babich

Nick Babich

2 years ago

Is ChatGPT Capable of Generating a Complete Mobile App?

Image generated using midjourney

TL;DR: It'll be harder than you think.

Mobile app development is a complicated product design sector. You require broad expertise to create a mobile app. You must write Swift or Java code and consider mobile interactions.

When ChatGPT was released, many were amazed by its capabilities and wondered if it could replace designers and developers. This article will use ChatGPT to answer a specific query.

Can ChatGPT build an entire iOS app?

This post will use ChatGPT to construct an iOS meditation app. Video of the article is available.

App concepts for meditation

After deciding on an app, think about the user experience. What should the app offer?

Let's ask ChatGPT for the answer.

Asking ChatGPT to describe a concept of a mediation app.

ChatGPT described a solid meditation app with various exercises. Use this list to plan product design. Our first product iteration will have few features. A simple, one-screen software will let users set the timeframe and play music during meditation.

Structure of information

Information architecture underpins product design. Our app's navigation mechanism should be founded on strong information architecture, so we need to identify our mobile's screens first.

ChatGPT can define our future app's information architecture since we already know it.

Asking ChatGPT, “what is a good structure for a mediation app for iOS?”

ChatGPT uses the more complicated product's structure. When adding features to future versions of our product, keep this information picture in mind.

Color palette

Meditation apps need colors. We want to employ relaxing colors in a meditation app because colors affect how we perceive items. ChatGPT can suggest product colors.

Asking ChatGPT to provide a color palette with hex colors that will contain brand color, as well as primary and secondary colors.

See the hues in person:

Listing colors provided by the ChatGPT

Neutral colors dominate the color scheme. Playing with color opacity makes this scheme useful.

Changing the opacity of the brand color in Figma.

Ambiance music

Meditation involves music. Well-chosen music calms the user.

Let ChatGPT make music for us.

Aksing ChatGPT to write music.

ChatGPT can only generate text. It directs us to Spotify or YouTube to look for such stuff and makes precise recommendations.

Fonts

Fonts can impress app users. Round fonts are easier on the eyes and make a meditation app look friendlier.

ChatGPT can suggest app typefaces. I compare two font pairs when making a product. I'll ask ChatGPT for two font pairs.

Ask ChatGPT to provide two font pairs for a meditation app.

See the hues in person:

Two font pairs generated by ChatGPT.

Despite ChatGPT's convincing font pairing arguments, the output is unattractive. The initial combo (Open Sans + Playfair Display) doesn't seem to work well for a mediation app.

Content

Meditation requires the script. Find the correct words and read them calmly and soothingly to help listeners relax and focus on each region of their body to enhance the exercise's effect.

ChatGPT's offerings:

Asking ChatGPT to write a meditation script.

ChatGPT outputs code. My prompt's word script may cause it.

Timer

After fonts, colors, and content, construct functional pieces. Timer is our first functional piece. The meditation will be timed.

Let ChatGPT write Swift timer code (since were building an iOS app, we need to do it using Swift language).

Aksing ChatGPT to write a code for a timer.

ChatGPT supplied a timer class, initializer, and usage guidelines.

Sample for timer initializer and recommendations on how to use it provided by ChatGPT.

Apple Xcode requires a playground to test this code. Xcode will report issues after we paste the code to the playground.

XCode shows error messages when use use a code generated by ChatGPT.

Fixing them is simple. Just change Timer to another class name (Xcode shows errors because it thinks that we access the properties of the class we’ve created rather than the system class Timer; it happens because both classes have the same name Timer). I titled our class Timero and implemented the project. After this quick patch, ChatGPT's code works.

Successful project build in Xcode using a modified version of a code provided by the ChatGPT.

Can ChatGPT produce a complete app?

Since ChatGPT can help us construct app components, we may question if it can write a full app in one go.

Question ChatGPT:

Asking ChatGPT to write a meditation app for iOS.

ChatGPT supplied basic code and instructions. It's unclear if ChatGPT purposely limits output or if my prompt wasn't good enough, but the tool cannot produce an entire app from a single prompt.

However, we can contact ChatGPT for thorough Swift app construction instructions.

Asking ChatGPT about instructions for building SwiftUI app.

We can ask ChatGPT for step-by-step instructions now that we know what to do. Request a basic app layout from ChatGPT.

Ask ChatGPT to generate a layout for the iOS app.

Copying this code to an Xcode project generates a functioning layout.

A layout built by XCode using the code provided by ChatGPT.

Takeaways

  • ChatGPT may provide step-by-step instructions on how to develop an app for a specific system, and individual steps can be utilized as prompts to ChatGPT. ChatGPT cannot generate the source code for the full program in one go.

  • The output that ChatGPT produces needs to be examined by a human. The majority of the time, you will need to polish or adjust ChatGPT's output, whether you develop a color scheme or a layout for the iOS app.

  • ChatGPT is unable to produce media material. Although ChatGPT cannot be used to produce images or sounds, it can assist you build prompts for programs like midjourney or Dalle-2 so that they can provide the appropriate images for you.

You might also like

rekt

rekt

3 years ago

LCX is the latest CEX to have suffered a private key exploit.

The attack began around 10:30 PM +UTC on January 8th.

Peckshield spotted it first, then an official announcement came shortly after.

We’ve said it before; if established companies holding millions of dollars of users’ funds can’t manage their own hot wallet security, what purpose do they serve?

The Unique Selling Proposition (USP) of centralised finance grows smaller by the day.

The official incident report states that 7.94M USD were stolen in total, and that deposits and withdrawals to the platform have been paused.

LCX hot wallet: 0x4631018f63d5e31680fb53c11c9e1b11f1503e6f

Hacker’s wallet: 0x165402279f2c081c54b00f0e08812f3fd4560a05

Stolen funds:

  • 162.68 ETH (502,671 USD)
  • 3,437,783.23 USDC (3,437,783 USD)
  • 761,236.94 EURe (864,840 USD)
  • 101,249.71 SAND Token (485,995 USD)
  • 1,847.65 LINK (48,557 USD)
  • 17,251,192.30 LCX Token (2,466,558 USD)
  • 669.00 QNT (115,609 USD)
  • 4,819.74 ENJ (10,890 USD)
  • 4.76 MKR (9,885 USD)

**~$1M worth of $LCX remains in the address, along with 611k EURe which has been frozen by Monerium.

The rest, a total of 1891 ETH (~$6M) was sent to Tornado Cash.**

Why can’t they keep private keys private?

Is it really that difficult for a traditional corporate structure to maintain good practice?

CeFi hacks leave us with little to say - we can only go on what the team chooses to tell us.

Next time, they can write this article themselves.

See below for a template.

SAHIL SAPRU

SAHIL SAPRU

3 years ago

How I grew my business to a $5 million annual recurring revenue

Scaling your startup requires answering customer demands, not growth tricks.

I cofounded Freedo Rentals in 2019. I reached 50 lakh+ ARR in 6 months before quitting owing to the epidemic.

Freedo aimed to solve 2 customer pain points:

  • Users lacked a reliable last-mile transportation option.

  • The amount that Auto walas charge for unmetered services

Solution?

Effectively simple.

Build ports at high-demand spots (colleges, residential societies, metros). Electric ride-sharing can meet demand.

We had many problems scaling. I'll explain using the AARRR model.

  • Brand unfamiliarity or a novel product offering were the problems with awareness. Nobody knew what Freedo was or what it did.

  • Problem with awareness: Content and advertisements did a poor job of communicating the task at hand. The advertisements clashed with the white-collar part because they were too cheesy.

  • Retention Issue: We encountered issues, indicating that the product was insufficient. Problems with keyless entry, creating bills, stealing helmets, etc.

  • Retention/Revenue Issue: Costly compared to established rivals. Shared cars were 1/3 of our cost.

  • Referral Issue: Missing the opportunity to seize the AHA moment. After the ride, nobody remembered us.

Once you know where you're struggling with AARRR, iterative solutions are usually best.

Once you have nailed the AARRR model, most startups use paid channels to scale. This dependence, on paid channels, increases with scale unless you crack your organic/inbound game.

Over-index growth loops. Growth loops increase inflow and customers as you scale.

When considering growth, ask yourself:

  • Who is the solution's ICP (Ideal Customer Profile)? (To whom are you selling)

  • What are the most important messages I should convey to customers? (This is an A/B test.)

  • Which marketing channels ought I prioritize? (Conduct analysis based on the startup's maturity/stage.)

  • Choose the important metrics to monitor for your AARRR funnel (not all metrics are equal)

  • Identify the Flywheel effect's growth loops (inertia matters)

My biggest mistakes:

  • not paying attention to consumer comments or satisfaction. It is the main cause of problems with referrals, retention, and acquisition for startups. Beyond your NPS, you should consider second-order consequences.

  • The tasks at hand should be quite clear.

Here's my scaling equation:

Growth = A x B x C

A = Funnel top (Traffic)

B = Product Valuation (Solving a real pain point)

C = Aha! (Emotional response)

Freedo's A, B, and C created a unique offering.

Freedo’s ABC:

A — Working or Studying population in NCR

B — Electric Vehicles provide last-mile mobility as a clean and affordable solution

C — One click booking with a no-noise scooter

Final outcome:

FWe scaled Freedo to Rs. 50 lakh MRR and were growing 60% month on month till the pandemic ceased our growth story.

How we did it?

We tried ambassadors and coupons. WhatsApp was our most successful A/B test.

We grew widespread adoption through college and society WhatsApp groups. We requested users for referrals in community groups.

What worked for us won't work for others. This scale underwent many revisions.

Every firm is different, thus you must know your customers. Needs to determine which channel to prioritize and when.

Users desired a safe, time-bound means to get there.

This (not mine) growth framework helped me a lot. You should follow suit.

Ren & Heinrich

Ren & Heinrich

3 years ago

200 DeFi Projects were examined. Here is what I learned.

Photo by Luke Chesser on Unsplash

I analyze the top 200 DeFi crypto projects in this article.

This isn't a study. The findings benefit crypto investors.

Let’s go!

A set of data

I analyzed data from defillama.com. In my analysis, I used the top 200 DeFis by TVL in October 2022.

Total Locked Value

The chart below shows platform-specific locked value.

14 platforms had $1B+ TVL. 65 platforms have $100M-$1B TVL. The remaining 121 platforms had TVLs below $100 million, with the lowest being $23 million.

TVLs are distributed Pareto. Top 40% of DeFis account for 80% of TVLs.

Compliant Blockchains

Ethereum's blockchain leads DeFi. 96 of the examined projects offer services on Ethereum. Behind BSC, Polygon, and Avalanche.

Five platforms used 10+ blockchains. 36 between 2-10 159 used 1 blockchain.

Use Cases for DeFi

The chart below shows platform use cases. Each platform has decentralized exchanges, liquid staking, yield farming, and lending.

These use cases are DefiLlama's main platform features.

Which use case costs the most? Chart explains. Collateralized debt, liquid staking, dexes, and lending have high TVLs.

The DeFi Industry

I compared three high-TVL platforms (Maker DAO, Balancer, AAVE). The columns show monthly TVL and token price changes. The graph shows monthly Bitcoin price changes.

Each platform's market moves similarly.

Probably because most DeFi deposits are cryptocurrencies. Since individual currencies are highly correlated with Bitcoin, it's not surprising that they move in unison.

Takeaways

This analysis shows that the most common DeFi services (decentralized exchanges, liquid staking, yield farming, and lending) also have the highest average locked value.

Some projects run on one or two blockchains, while others use 15 or 20. Our analysis shows that a project's blockchain count has no correlation with its success.

It's hard to tell if certain use cases are rising. Bitcoin's price heavily affects the entire DeFi market.

TVL seems to be a good indicator of a DeFi platform's success and quality. Higher TVL platforms are cheaper. They're a better long-term investment because they gain or lose less value than DeFis with lower TVLs.